CS 188: Artificial Intelligence Spring 2010

Lecture 21: DBNs, Viterbi, Speech Recognition 4/8/2010

Pieter Abbeel - UC Berkeley

P4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

Announcements

- Written 6 due tonight
- Project 4 up
- Due $4 / 15$ - start early!
- Course contest update
- Planning to post by Friday night

Today

- Dynamic Bayes Nets (DBNs)
- [sometimes called temporal Bayes nets]
- HMMs: Most likely explanation queries
- Speech recognition
- A massive HMM!
- Details of this section not required
- Start machine learning

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P\left(X_{T} \mid e_{1: T}\right)$ is computed $\uparrow P\left(G_{3}^{b} \mid\right.$

- Online belief updates: Eliminate all variables from the previous time step; store factors for current time only
- Discrete valued dynamic Bayes nets are also HMMs

DBN Particle Filters

\rightarrow - A particle is a complete sample for a time step

- Initialize: Generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{G}_{1}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{1}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $\underbrace{P\left(\mathbf{E}_{1} \mathbf{a}\right.} \mid \mathbf{G}_{\mathbf{1}}{ }^{\mathbf{a}}){ }^{*} \mathrm{P}(\underbrace{\mathbf{E}_{1} \mathbf{b}} \mid \mathbf{G}_{\mathbf{1}}{ }^{\mathbf{b}})$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Today

- Dynamic Bayes Nets (DBNs)
- [sometimes called temporal Bayes nets]
- HMMs: Most likely explanation queries
- Speech recognition
- A massive HMM!
- Details of this section not required
- Start machine learning

Speech and Language

- Speech technologies
- Automatic speech recognition (ASR)
- Text-to-speech synthesis (TTS)
- Dialog systems
- Language processing technologies
- Machine translation

- Information extraction
- Web search, question answering
- Text classification, spam filtering, etc... \varangle

- We do not know the map or our location

Our belief state is over maps and positions! \leftarrow

- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods
- [DEMOS]
- [intel-lab-raw-odo.wmv, intel-lab-scan-matching.wmv, visionSlam_heliOffice.wmv]

- State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \quad t=2$
- Each path is a sequence of states
- The product of weights on a path is the seq's probability
- Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph ${ }^{14}$

Today

－Dynamic Bayes Nets（DBNs）
－［sometimes called temporal Bayes nets］
－HMMs：Most likely explanation queries
－Speech recognition
－A massive HMM！
－Details of this section not required
－Start machine learning

Spectral Analysis

－Frequency gives pitch；amplitude gives volume
－sampling at $\sim 8 \mathrm{kHz}$ phone，$\sim 16 \mathrm{kHz}$ mic（ $\mathrm{kHz}=1000 \mathrm{cycles} / \mathrm{sec}$ ）

－Fourier transform of wave displayed as a spectrogram －darkness indicates energy at each frequency

20

Digitizing Speech

1

Spectrum

Frequency components (100 and 1000 Hz) on x -axis

$f(t)=\sum_{f} \frac{a_{f} \sin (f \cdot 2 \pi t)+b f \cos (f 2 \pi t)}{\text { BaCK to Spectra enngyfor } f}=a^{2}+b_{\rho}^{2}$

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at $930 \mathrm{~Hz}, 1860 \mathrm{~Hz}$, and 3020 Hz .

Acoustic Feature Sequence

- Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

- These are the observations, now we need the hidden states X

End of Part II!

- Now we're done with our unit on probabilistic reasoning
- Last part of class: machine learning 4

